Discriminant Laplacian Embedding
نویسندگان
چکیده
Many real life applications brought by modern technologies often have multiple data sources, which are usually characterized by both attributes and pairwise similarities at the same time. For example in webpage ranking, a webpage is usually represented by a vector of term values, and meanwhile the internet linkages induce pairwise similarities among the webpages. Although both attributes and pairwise similarities are useful for class membership inference, many traditional embedding algorithms only deal with one type of input data. In order to make use of the both types of data simultaneously, in this work, we propose a novel Discriminant Laplacian Embedding (DLE) approach. Supervision information from training data are integrated into DLE to improve the discriminativity of the resulted embedding space. By solving the ambiguity problem in computing the scatter matrices caused by data points with multiple labels, we successfully extend the proposed DLE to multi-label classification. In addition, through incorporating the label correlations, the classification performance using multi-label DLE is further enhanced. Promising experimental results in extensive empirical evaluations have demonstrated the effectiveness of our approaches.
منابع مشابه
The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کاملSpectral Regression Discriminant Analysis for Hyperspectral Image Classification
Dimensionality reduction algorithms, which aim to select a small set of efficient and discriminant features, have attracted great attention for Hyperspectral Image Classification. The manifold learning methods are popular for dimensionality reduction, such as Locally Linear Embedding, Isomap, and Laplacian Eigenmap. However, a disadvantage of many manifold learning methods is that their computa...
متن کاملQuantum Laplacian Eigenmap
Laplacian eigenmap algorithm is a typical nonlinear model for dimensionality reduction in classical machine learning. We propose an efficient quantum Laplacian eigenmap algorithm to exponentially speed up the original counterparts. In our work, we demonstrate that the Hermitian chain product proposed in quantum linear discriminant analysis (arXiv:1510.00113,2015) can be applied to implement qua...
متن کاملThe University of Chicago Locality Preserving Projections a Dissertation Submitted to the Faculty of the Division of the Physical Sciences in Candidacy for the Degree of Doctor of Philosophy Department of Computer Science By
Many problems in information processing involve some form of dimensionality reduction. In this thesis, we introduce Locality Preserving Projections (LPP). These are linear projective maps that arise by solving a variational problem that optimally preserves the neighborhood structure of the data set. LPP should be seen as an alternative to Principal Component Analysis (PCA) – a classical linear ...
متن کاملOptimum decoder for multiplicative spread spectrum image watermarking with Laplacian modeling
This paper investigates the multiplicative spread spectrum watermarking method for the image. The information bit is spreaded into middle-frequency Discrete Cosine Transform (DCT) coefficients of each block of an image using a generated pseudo-random sequence. Unlike the conventional signal modeling, we suppose that both signal and noise are distributed with Laplacian distribution, because the ...
متن کامل